Composite Safety and Certification Initiatives

Larry Ilcewicz
CS&TA

Federal Aviation Administration July 10, 2007

- Background
 - Objectives
 - Recent Accomplishments
 - Support from JAMS
- Challenges for JAMS
 - Future relevance
 - Expand industry involvement
- Safety Management
 - Role of CACRC & CMH-17
 - New WSU project

Technical Thrust Areas

Advancements depend on close integration between areas

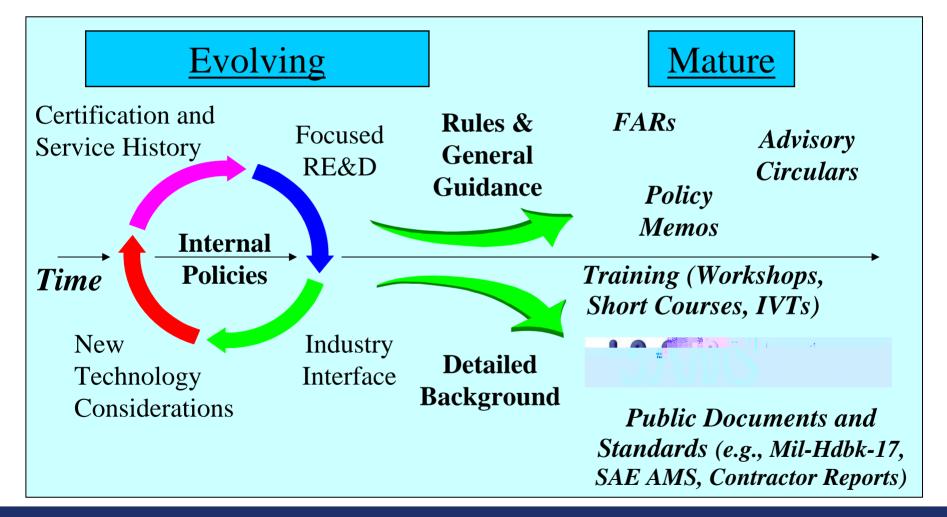
Material Control, Standardization and Shared Databases

Structural Substantiation

- Advances in analysis
 & test building blocks
- Statistical significance
- Environmental effects
- Manufacturing integration

FAA and NASA
R&D is currently
active in most
of these areas

Bonded Joint Processing Issues


Flammability & Crashworthiness

Support to cabin safety research groups

Significant progress, which has relevance to all aircraft products, has been gained to date

FAA Approach to Composite Safety and Certification Initiatives

FAA Composite Team Members

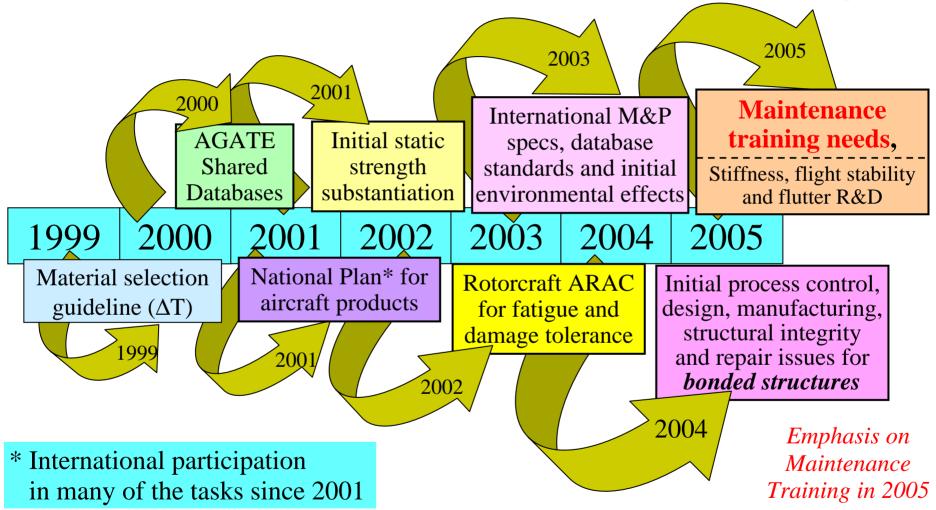
Represented Group	Team Member Name	FAA Organization Number & Routing		
FAA	Curtis Davies	AAR-450 (FAA Technical Center)		
Tech. Center	TBD (Peter's replacement)	AAR-450 (FAA Technical Center)		
International	John Masters	AEU-100 (Brussels Aircraft Certification Staff)		
Directorates	Lester Cheng	ACE-111 (Small Airplane Directorate)		
	Bob Stegeman	ACE-111 (Small Airplane Directorate)		

Charles Harrison ASW-110 (Rotorcraft Directorate)

CSTA and STS Advisors:

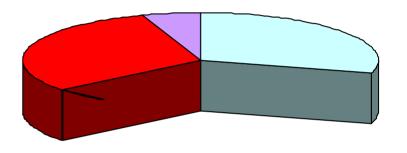
Al Broz, Robert Eastin, John Howford, Terry Khaled, Steve Soltis, Dave Walen, Chip Queitzsch

Important Teammates


- NASA has been a leader for composite applications
 - Significant research support since 1970/1980s
 - AA587, A300-600 accident investigation
 - NCAMP support to material standardization
- Partnerships with industry have been essential, e.g., CMH-17, SAE P-17, CACRC, ASTM, SAMPE, AGATE, SATS, RITA, SAS/IAB/AACE

- DOD and DARPA research
- EASA and other foreign research/standardization

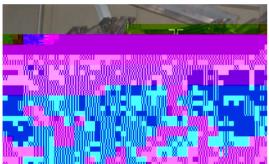
Past Milestones for Composite Safety & Certification Policy, Guidance & Training



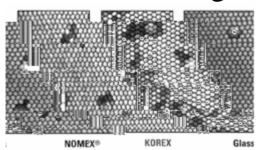
Joint Efforts by Industry & Regulatory Experts to Standardize a Course on Critical Composite Maintenance & Repair Issues

- 2004: Initial workshops to define framework (incl. course objectives on the key areas of awareness for engineers, technicians & inspectors)
- <u>2005</u>: 11 course modules drafted for workshop review
- 2006: Update modules and develop course standards with SAE CACRC

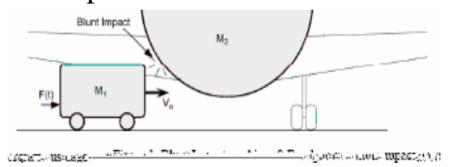
• <u>2007</u>: Coordinated FAA/industry release of course standards



Other Examples of JAMS R&D Directly Related to CS&CI in Damage Tolerance & Maintenance


Future composite guidance, policy and training development in areas driven by industry needs

Related research (examples shown below)


Structural Substantiation Protocol

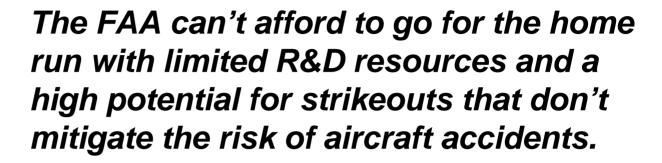
Sandwich Fluid Ingression

Impact Threat Assessment

NDI Standards

FAA Perspectives on JAMS Research & Educational Developments

FAA is primarily interested in studying service incidents and emerging safety threats but will also evaluate new technology being used in product certification


- Primary goal: study "real-world" issues for advanced materials & structures, with emphasis on the factors affecting safety
- Secondary goals: evaluate new technology applied in product certification (e.g., composite fuselage damage tolerance)
 Supporting technologies such as test methods, process controls and analysis methods can also be studied to ID limits & establish protocol for use (pre-requisites: must have relevance to safety and industry is close to using them for certification & airworthiness assessments)
- Deliverables should ultimately lead to guidance, policy, standard training materials and protocol for acceptable industry practices

Challenges for JAMS Future Relevance

- Emphasis must be on safety & certification
 - Experts from industry & regulatory bodies must be active in JAMS research & educational developments such that deliverables have relevance and utility
 - Need an assessment of whether that is happening in a continuous review of our programs throughout the year
- Most FAA research projects are expected to have a near-term focus (results used in the field within 1 to 2 years)
 - Safety & certification R&D with a low risk of failure
- Longer-term projects must retain an emphasis on safety & certification *not developing technology for industry*
 - Payoffs from more demanding R&D (not higher risk of failure)

I Icewicz Anecdotes for JAMS R&D

Silver bullets, The Holy Grail and a Pot of Gold at the End of the Rainbow only seem to work in the movies

Links with Mil-17 (CMH-17), SAE CACRC and Safety Management

- Mil-17 (Composite Materials Handbooks, CMH-17)
 - − ~ 100 industry engineers meet every 8 months
 - FAA/EASA/Industry WG deliverables to update CMH-17, Vol. 3
 Chapters on Damage Tolerance & Supportability for Rev. G
 - New CMH-17 Safety Management WG has been initiated
 - FAA strategy: use CMH-17 as a forum to develop guidance and establish educational services to offset costs

- ~ 50-75 industry engineers meet every 6 months (~7 WG)
- Airlines have dropped out of CACRC over time, requiring more OEM and MRO leadership for organization to survive
- New CACRC Safety Management WG has been initiated
- FAA strategy: use CACRC as a forum to develop guidance and support industry composite maintenance standards & training efforts

New Wichita State Univ. Project

Development and Safety Management of Composite Certification Guidance

- Engage industry on technical matters of relevance in mitigating the risk of accidents, incidents and emerging safety threats
- Facilitate the development of strategies for CMH-17 and CACRC
- Support workshops, industry meetings and web-based forum
- FY07/FY08 tasks supporting the following initiatives
 - Joint CACRC/CMH-17 Safety Management WG Mtg. (Wichita, 11/07)
 - CMH-17/NCAMP strategies for data review and dissemination
 - New CMH-17 Tutorial (V3/C3:Aircraft Structure Certification & Compliance)
 - Updates to main composite advisory circular (AC 20-107B)