

The Effects of Damage and Uncertainty on the Aeroelastic / Aeroservoelastic Behavior and Safety of Composite Aircraft

Presented by Dr. Eli Livne Department of Aeronautics and Astronautics University of Washington

JAMS Meeting, July 10-12, 2007

Contributors

- Department of Aeronautics and Astronautics
 - Luciano Demasi, post-doctoral research fellow
 - Andrey Styuart, research scientist, assistant professor temp.
 - Marat Mor, post doctoral research fellow
 - Eli Livne Pl, Professor
- Department of Mechanical Engineering
 - Francesca Paltera, graduate student
 - Mark Tuttle, professor
- Boeing Commercial, Seattle
 - James Gordon, Associate Technical Fellow, Flutter Methods Development
 - Carl Niedermeyer, Manager, 787/747 Flutter Engineering & Methods Development
 - Kumar Bhatia, Senior Technical Fellow, Aeroelasticity and Multidisciplinary
 Optimization
- FAA Technical Monitor
 - Curtis Davies, Program Manager of

A Center

- Motivation & Key Issues
- Linear flutter of damaged and uncertain composite airframes
- Nonlinear flutter of damaged and uncertain composite airframes:
 - LCOs and explosive flutter cases
- Probabilistic approach to the aeroelastic reliability of damaged composite aircraft
- Automated simulation capabilities: linear and nonlinear
- Sensitivity analyses and worst-case scenario identification tools
- Monte Carlo simulations
- Experimental capabilities development

Damage

Delamination

Joint/attachment changes

Debonding

Environmental effects, etc.

- Develop computational tools (validated by experiments) for <u>automated</u> local/global linear/nonlinear analysis of integrated structures/ aerodynamics / control systems subject to multiple local variations/ damage.
- Develop aeroservoelastic probabilistic / reliability analysis for composite actively-controlled aircraft.
- Link with design optimization tools to affect design and repair considerations.
- Develop a better understanding of effects of local structural and material variations in composites on overall Aeroservoelastic integrity.
- Establish a collaborative expertise base for future response to FAA, NTSB, and industry needs, R&D, training, and education.

Automated simulations for carrying out fast repetitive analyses of large numbers of parameter variation cases

Goals:

Identify worst case damage and structural variation scenarios and critical areas

Provide flutter information for Monte Carlo (or other) statistical simulations

JMS Automated System for Calculating Flutter Speeds of Large Numbers of Airframe Structural Variations

J

Reduction in flutter speed on a TE flaperon due to loss of local panel stiffness due to damage (top covers)

Linear flutter of damaged and uncertain composite airframes

- Computational array of industry standard tools ready and tested
- Used for flutter damage-sensitivity studies of fighter wing / flaperon system
- Used for flutter-failure reliability studies of fighter wing / flaperon system
- Ready for Boeing generic composite vertical tail / rudder system NASTRAN model
- Boeing NASTRAN model will be provided soon (in a way clear of proprietary and ITAR limitations), and used in flutter sensitivity-to-damage and reliability studies.

A typical passenger airplane Boeing vertical tail / rudder NASTRAN model

- Simulate wing / control surface systems with control system free-play over a range of parameter variations to capture LCO (limit cycle oscillations) behavior automatically
- Use in Monte Carlo simulations to obtain behavior statistics and reliability estimates
- Contribute to the aeroelastic design of currently emerging composite airframe passenger aircraft

The Damaged airframe problem:

- Simulate nonlinear aeroelastic behavior due to nonlinear local structural effects due to local damage or degradation
- Use to identify possible damage mechanisms that can lead to such behavior
- Use in Monte Carlo simulations and reliability studies University of Washington

JMS

3DOF aeroelastic system

Damage may result in:

- reduction of stiffness
- moisture absorption and possible changes in properties
- changes in stiffness and inertia properties after damage repair
- irreversible properties degradation due to aging

Random Simulation

- 5 geometrical parameters
- 6 inertia parameters
- 4 stiffness parameters
- 3 structural damping parameters
- 2 free-play parameters
- air density, airspeed, discrete gust velocity

LCO study: Monte-Carlo results wing / control surface system

A Center 6 196

JMS 3DOF Problem: Flutter Speed Sensitivity Study

Variable	Description	PDF	mean	C_{v}	
b	Semi-chord	Normal	0.127 m	0.2%	
a _d	Elastic axis, m	Normal	-0.0635	1%	
c _d	Hinge line, m	Normal	0.0635	1%	
span	Span	Weibull	0.52 m	0.2%	
x _a	c.g. of entire wing	Normal	0.0551 m	2%	
x _b	c.g. of aileron	Normal	0.0025 m	2%	0.1000 -
Ia	Moment of inertia of entire section	Normal	0.01347 kg m ²	4%	0.0500
Ib	Moment of inertia of aileron-tab	Weibull	0.0003264 kg m^2	4%	
ms	Mass of section	Normal	1.558 kg	0.2%	
m _{blocks}	Mass of support blocks	Normal	0.9497 kg	0.2%	
Kh					

University of Washington

Propabilistic

0.1500

0.2000

0.2500

-0.3000

A Center 6 196

JMSSimulation of structurally nonlinear aeroelastic behavior due to distributed large deformations and damage in composite airframes

- Status:
 - Development complete
 - Major theoretical issues resolved
 - Validation using experimental and computational results for a simple geometrically nonlinear test wing model complete

Possible large deformation

A Center

Possible nonlinear local behavior due to damage or degradation

Numerical simulation capabilities for structurally nonlinear aeroelstic problems using detailed industry-standard

Numerical simulation capabilities for structurally nonlinear aeroelstic problems using detailed industry-standard modeling techniques – localized nonlinearities

- Local structural nonlinearity due to local damage mechanisms
- Develop efficient Finite Element (NASTRAN-like) modeling for geometrically nonlinear thin-walled composite airframes
- Couple with industry-standard linear unsteady aerodynamics (Doublet Lattice, ZAERO, etc.) and industry standard aeroelasticity / controls integration practices
- Major parts completed. In progress.

- Test case uses representative airplane model with associated realworld complexity
- Test case does not reflect any service configuration / flight conditions
- Test case used freeplay values far in excess of any maximum inservice limits

- Full size non-symmetric test-case passenger aircraft study
- 153 modes used
- Free-play allowed in one trim tab (only one side of the aircraft)
- Unsteady aerodynamics adjusted by wind tunnel data
- Algorithms and tools for automated determination of flutter speeds /

Details:

Styuart, A., Mor, M., Livne, E., and Lin, K.,

"Risk Assessment of Aeroelastic Failure Phenomena in Damage Tolerant Composite Structures",

AIAA Paper 2007-1981, 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,

and Materials Conference, Honolulu, Hawaii, Apr. 23-26, 2007

Failure types:

Flutter: airspeed exceeds the flutter speed of damaged structure Post-static-failure flutter failure: airspeed exceeds flutter speed of buckled / failed structure High amplitude limit cycle oscillations: the acceptable level of vibrations is exceeded

Uncertainties:

Flutter speed prediction: systemic (accuracy of simulation technology) Flutter speed prediction: individual (variation of properties) Fleet variability Flight tests of one specimen (and possible modifications, if required) Add damage statistics (size, location, type)

3D example problem – slide 2

3D example problem – slide 4

Probability of Failure due to Panel 15 vs.

JMS

- Rudder Assembly
 - Foam core is CNC machined.
 - The aluminum hinge tube is epoxy bonded to the foam core.
 - Carbon fiber is layed up around the aluminum/foam assembly and cured.
 - Slots are machined to accommodate the hinge ribs.

A Center

- Damage modes
 - Debonding.
 - **Delamination**
 - **Core cracking**
 - Hinge failure

University of Washington

A Center 6 196

811

University of] sington

- Formulation of a comprehensive approach to the inclusion of aeroelastic failures in the reliability assessment of composite aircraft, and resulting benefits to both maintenance and design practices, covering:
 - Different damage types in composite airframes and their statistics;
 - Aeroelastic stability due to linear and nonlinear mechanisms;
 - Aeroelastic <u>response levels</u> (vibration levels and fatigue due to gust response and response to other dynamic excitations);
 - Theoretical, computational, and experimental work with aeroelastic systems ranging from basic to complex full-size airplanes, to serve as benchmark for industry methods development and for understanding basic physics as well as design & maintenance tradeoffs.

- Apply linear simulation tools to a representative (generic) Boeing-supplied vertical tail / rudder model.
- Extend the UW time-domain LCO simulation capability to complete